Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 116
1.
Sci Adv ; 10(15): eadm7600, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38608019

Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.


Charcot-Marie-Tooth Disease , Schwann Cells , Animals , Mice , Myelin Sheath/genetics , Charcot-Marie-Tooth Disease/genetics , Mutation , Protein Processing, Post-Translational
2.
Am J Hum Genet ; 111(4): 761-777, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38503299

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.


Epilepsy , Mutation, Missense , Neurodevelopmental Disorders , Shab Potassium Channels , Animals , Humans , Action Potentials , Epilepsy/genetics , Neurons , Oocytes , Xenopus laevis , Shab Potassium Channels/genetics , Shab Potassium Channels/metabolism , Neurodevelopmental Disorders/genetics
3.
J Inherit Metab Dis ; 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38430011

Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder characterized by arylsulfatase A (ASA) deficiency, leading to sulfatide accumulation and myelin degeneration in the central nervous system. While primarily considered a white matter (WM) disease, gray matter (GM) is also affected in MLD, and hematopoietic stem cell transplantation (HSCT) may have limited effect on GM atrophy. We cross-sectionally and longitudinally studied GM volumes using volumetric MRI in a cohort of 36 (late-infantile, juvenile and adult type) MLD patients containing untreated and HSCT treated subjects. Cerebrum, cortical GM, (total) CSF, cerebellum, deep gray matter (DGM) (excluding thalamus) and thalamus volumes were analyzed. Longitudinal correlations with measures of cognitive and motor functioning were assessed. Cross-sectionally, juvenile and adult type patients (infantiles excluded based on limited numbers) were compared with controls at earliest scan, before possible treatment. Patients had lower cerebrum, cortical GM, DGM and thalamus volumes. Differences were most pronounced for adult type patients. Longitudinal analyses showed substantial and progressive atrophy of all regions and increase of CSF in untreated patients. Similar, albeit less pronounced, effects were seen in treated patients for cerebrum, cortical GM, CSF and thalamus volumes. Deterioration in motor performance (all patients) was related to atrophy, and increase of CSF, in all regions. Cognitive functioning (data available for treated patients) was related to cerebral, cortical GM and thalamus atrophy; and to CSF increase. Our findings illustrate the importance of recognizing GM pathology as a potentially substantial, clinically relevant part of MLD, apparently less amenable to treatment.

4.
N Engl J Med ; 390(7): 623-629, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38354141

Wolman's disease, a severe form of lysosomal acid lipase deficiency, leads to pathologic lipid accumulation in the liver and gut that, without treatment, is fatal in infancy. Although continued enzyme-replacement therapy (ERT) in combination with dietary fat restriction prolongs life, its therapeutic effect may wane over time. Allogeneic hematopoietic stem-cell transplantation (HSCT) offers a more definitive solution but carries a high risk of death. Here we describe an infant with Wolman's disease who received high-dose ERT, together with dietary fat restriction and rituximab-based B-cell depletion, as a bridge to early HSCT. At 32 months, the infant was independent of ERT and disease-free, with 100% donor chimerism in the peripheral blood.


Dietary Fats , Enzyme Replacement Therapy , Hematopoietic Stem Cell Transplantation , Immunologic Factors , Rituximab , Wolman Disease , Humans , Infant , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Chimerism , Dietary Fats/adverse effects , Enzyme Replacement Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Immunologic Factors/therapeutic use , Rituximab/therapeutic use , Transplantation, Homologous , Wolman Disease/diet therapy , Wolman Disease/drug therapy , Wolman Disease/immunology , Wolman Disease/therapy
5.
JIMD Rep ; 64(3): 217-222, 2023 May.
Article En | MEDLINE | ID: mdl-37151363

Glutaminase (GLS) hyperactivity was first described in 2019 in a patient with profound developmental delay and infantile cataract. Here, we describe a 4-year-old boy with GLS hyperactivity due to a de novo heterozygous missense variant in GLS, detected by trio whole exome sequencing. This boy also exhibits developmental delay without dysmorphic features, but does not have cataract. Additionally, he suffers from epilepsy with tonic clonic seizures. In line with the findings in the previously described patient with GLS hyperactivity, in vivo 3 T magnetic resonance spectroscopy (MRS) of the brain revealed an increased glutamate/glutamine ratio. This increased ratio was also found in urine with UPLC-MS/MS, however, inconsistently. This case indicates that the phenotypic spectrum evoked by GLS hyperactivity may include epilepsy. Clarifying this phenotypic spectrum is of importance for the prognosis and identification of these patients. The combination of phenotyping, genetic testing, and metabolic diagnostics with brain MRS and in urine is essential to identify new patients with GLS hyperactivity and to further extend the phenotypic spectrum of this disease.

6.
Ann Clin Transl Neurol ; 10(7): 1146-1159, 2023 07.
Article En | MEDLINE | ID: mdl-37212343

OBJECTIVE: Metachromatic leukodystrophy is a lysosomal storage disease caused by deficient arylsulfatase A. It is characterized by progressive demyelination and thus mainly affects the white matter. Hematopoietic stem cell transplantation may stabilize and improve white matter damage, yet some patients deteriorate despite successfully treated leukodystrophy. We hypothesized that post-treatment decline in metachromatic leukodystrophy might be caused by gray matter pathology. METHODS: Three metachromatic leukodystrophy patients treated with hematopoietic stem cell transplantation with a progressive clinical course despite stable white matter pathology were clinically and radiologically analyzed. Longitudinal volumetric MRI was used to quantify atrophy. We also examined histopathology in three other patients deceased after treatment and compared them with six untreated patients. RESULTS: The three clinically progressive patients developed cognitive and motor deterioration after transplantation, despite stable mild white matter abnormalities on MRI. Volumetric MRI identified cerebral and thalamus atrophy in these patients, and cerebellar atrophy in two. Histopathology showed that in brain tissue of transplanted patients, arylsulfatase A expressing macrophages were clearly present in the white matter, but absent in the cortex. Arylsulfatase A expression within patient thalamic neurons was lower than in controls, the same was found in transplanted patients. INTERPRETATION: Neurological deterioration may occur after hematopoietic stem cell transplantation in metachromatic leukodystrophy despite successfully treated leukodystrophy. MRI shows gray matter atrophy, and histological data demonstrate absence of donor cells in gray matter structures. These findings point to a clinically relevant gray matter component of metachromatic leukodystrophy, which does not seem sufficiently affected by transplantation.


Demyelinating Diseases , Hematopoietic Stem Cell Transplantation , Leukodystrophy, Metachromatic , Neurodegenerative Diseases , Humans , Leukodystrophy, Metachromatic/therapy , Cerebroside-Sulfatase , Neurodegenerative Diseases/pathology , Hematopoietic Stem Cell Transplantation/adverse effects , Brain/diagnostic imaging , Brain/pathology , Demyelinating Diseases/pathology
7.
JIMD Rep ; 64(1): 53-56, 2023 Jan.
Article En | MEDLINE | ID: mdl-36636591

Mevalonate kinase (MK) deficiency is a rare autosomal recessive metabolic disorder caused by pathogenic variants in the MVK gene with a broad phenotypic spectrum including autoinflammation, developmental delay and ataxia. Typically, neurological symptoms are considered to be part of the severe end of the phenotypical spectrum and are reported to be in addition to the autoinflammatory symptoms. Here, we describe a patient with MK deficiency with severe neurological symptoms but without autoinflammation and we found several similar patients in the literature. Possibly, the non-inflammatory phenotype is related to a specific genotype: the MVK p.(His20Pro)/p.(Ala334Thr) variant. There is probably an underdetection of the neurological MK deficient phenotype without inflammatory symptoms as clinicians may not test for MK deficiency when patients present with only neurological symptoms. In conclusion, although rare, neurological symptoms without hyperinflammation might be more common than expected in MK deficiency. It seems relevant to consider MK deficiency in patients with psychomotor delay and ataxia, even if there are no inflammatory symptoms.

8.
Am J Hum Genet ; 110(1): 146-160, 2023 01 05.
Article En | MEDLINE | ID: mdl-36608681

Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes. To delineate how cellular consequences of NAE1 deficiency would lead to the clinical phenotype, we focused primarily on the rarest phenotypic features, based on the assumption that these would best reflect the pathophysiology at stake. Two of the rarest features, neuronal loss and lymphopenia worsening during infections, suggest that NAE1 is required during cellular stress caused by infections to protect against cell death. In support, we found that stressing the proteasome system with MG132-requiring upregulation of neddylation to restore proteasomal function and proteasomal stress-led to increased cell death in fibroblasts of individuals with NAE1 genetic variants. Additionally, we found decreased lymphocyte counts after CD3/CD28 stimulation and decreased NF-κB translocation in individuals with NAE1 variants. The rarest phenotypic feature-delayed closure of the ischiopubic rami-correlated with significant downregulation of RUN2X and SOX9 expression in transcriptomic data of fibroblasts. Both genes are involved in the pathophysiology of ischiopubic hypoplasia. Thus, we show that NAE1 plays a major role in (skeletal) development and cellular homeostasis during stress. Our approach suggests that a focus on rare phenotypic features is able to provide significant pathophysiological insights in diseases caused by mutations in genes with pleiotropic effects.


Intellectual Disability , Lymphopenia , Humans , NEDD8 Protein/genetics , NEDD8 Protein/metabolism , Signal Transduction/genetics , Intellectual Disability/genetics , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Lymphopenia/genetics
9.
J Inherit Metab Dis ; 45(5): 952-962, 2022 09.
Article En | MEDLINE | ID: mdl-35722880

Tyrosinemia type 1 (TT1) and phenylketonuria (PKU) are both inborn errors of phenylalanine-tyrosine metabolism. Neurocognitive and behavioral outcomes have always featured in PKU research but received less attention in TT1 research. This study aimed to investigate and compare neurocognitive, behavioral, and social outcomes of treated TT1 and PKU patients. We included 33 TT1 patients (mean age 11.24 years; 16 male), 31 PKU patients (mean age 10.84; 14 male), and 58 age- and gender-matched healthy controls (mean age 10.82 years; 29 male). IQ (Wechsler-subtests), executive functioning (the Behavioral Rating Inventory of Executive Functioning), mental health (the Achenbach-scales), and social functioning (the Social Skills Rating System) were assessed. Results of TT1 patients, PKU patients, and healthy controls were compared using Kruskal-Wallis tests with post-hoc Mann-Whitney U tests. TT1 patients showed a lower IQ and poorer executive functioning, mental health, and social functioning compared to healthy controls and PKU patients. PKU patients did not differ from healthy controls regarding these outcome measures. Relatively poor outcomes for TT1 patients were particularly evident for verbal IQ, BRIEF dimensions "working memory", "plan and organize" and "monitor", ASEBA dimensions "social problems" and "attention problems", and for the SSRS "assertiveness" scale (all p values <0.001). To conclude, TT1 patients showed cognitive impairments on all domains studied, and appeared to be significantly more affected than PKU patients. More attention should be paid to investigating and monitoring neurocognitive outcome in TT1 and research should focus on explaining the underlying pathophysiological mechanism.


Phenylketonurias , Tyrosinemias , Child , Humans , Male , Mental Health , Metabolic Networks and Pathways , Neuropsychological Tests , Tyrosinemias/genetics
10.
Article En | MEDLINE | ID: mdl-35627432

The juvenile variant of Neuronal Ceroid Lipofuscinosis (CLN3 disease/Batten disease) is a rare progressive brain disease in children and young adults, characterized by vision loss, decline in cognitive and motor capacities and epilepsy. Children with CLN3 disease often show disturbed behaviour and emotions. The aim of this study is to gain a better understanding of the behaviour and emotions of children with CLN3 disease and to examine the support that the children and their parents are receiving. A combination of qualitative and quantitative analysis was used to analyse patient files and parent interviews. Using a framework analysis approach a codebook was developed, the sources were coded and the data were analysed. The analysis resulted in overviews of (1) typical behaviour and emotions of children as a consequence of CLN3 disease, (2) the support children with CLN3 disease receive, (3) the support parents of these children receive, and (4) the problems these parents face. For a few children their visual, physical or cognitive deterioration was found to lead to specific emotions and behaviour. The quantitative analysis showed that anxiety was reported for all children. The presented overviews on support contain tacit knowledge of health care professionals that has been made explicit by this study. The overviews may provide a lead to adaptable support-modules for children with CLN3 disease and their parents.


Neuronal Ceroid-Lipofuscinoses , Child , Emotions , Family , Humans , Membrane Glycoproteins , Molecular Chaperones , Young Adult
11.
Clin Case Rep ; 10(4): e05637, 2022 Apr.
Article En | MEDLINE | ID: mdl-35387289

This study aimed to describe the surgical challenges, management, and value of intraoperative optical coherence tomography in a case of a bilateral Descemet Stripping Automated Endothelial Keratoplasty corneal transplantation at 17 weeks of age for the treatment of severe posterior polymorphous corneal dystrophy resulting from a de novo mutation of the OVOL2-gene.

12.
iScience ; 25(2): 103823, 2022 Feb 18.
Article En | MEDLINE | ID: mdl-35198885

MED13L syndrome is a haploinsufficiency developmental disorder characterized by intellectual disability, heart malformation, and hypotonia. MED13L controls transcription by tethering the cyclin C-Cdk8 kinase module (CKM) to the Mediator complex. In addition, cyclin C has CKM-independent roles in the cytoplasm directing stress-induced mitochondrial fragmentation and regulated cell death. Unstressed MED13L S1497 F/fs patient fibroblasts exhibited aberrant cytoplasmic cyclin C localization, mitochondrial fragmentation, and a 6-fold reduction in respiration. In addition, the fibroblasts exhibited reduced mtDNA copy number, reduction in mitochondrial membrane integrity, and hypersensitivity to oxidative stress. Finally, transcriptional analysis of MED13L mutant fibroblasts revealed reduced mRNA levels for several genes necessary for normal mitochondrial function. Pharmacological or genetic approaches preventing cyclin C-mitochondrial localization corrected the fragmented mitochondrial phenotype and partially restored organelle function. In conclusion, this study found that mitochondrial dysfunction is an underlying defect in cells harboring the MED13L S1497 F/fs allele and identified cyclin C mis-localization as the likely cause. These results provide a new avenue for understanding this disorder.

13.
Orphanet J Rare Dis ; 17(1): 48, 2022 02 14.
Article En | MEDLINE | ID: mdl-35164810

BACKGROUND: Metachromatic Leukodystrophy (MLD) is a rare lysosomal disorder. Patients suffer from relentless neurological deterioration leading to premature death. Recently, new treatment modalities, including gene therapy and enzyme replacement therapy, have been developed. Those advances increase the need for high-quality research infrastructure to adequately compare treatments, execute post-marketing surveillance, and perform health technology assessments (HTA). To facilitate this, a group of MLD experts started the MLD initiative (MLDi) and initiated an academia-led European MLD registry: the MLDi. An expert-based consensus procedure, namely a modified Delphi procedure, was used to determine the data elements required to answer academic, regulatory, and HTA research questions. RESULTS: Three distinct sets of data elements were defined by the 13-member expert panel. The minimal set (n = 13) contained demographics and basic disease characteristics. The core set (n = 55) included functional status scores in terms of motor, manual, speech and eating abilities, and causal and supportive treatment characteristics. Health-related quality of life scores were included that were also deemed necessary for HTA. The optional set (n = 31) contained additional clinical aspects, such as findings at neurological examination, detailed motor function, presence of peripheral neuropathy, gall bladder involvement and micturition. CONCLUSION: Using a modified Delphi procedure with physicians from the main expert centers, consensus was reached on a core set of data that can be collected retrospectively and prospectively. With this consensus-based approach, an important step towards harmonization was made. This unique dataset will support knowledge about the disease and facilitate regulatory requirements related to the launch of new treatments.


Leukodystrophy, Metachromatic , Consensus , Humans , Leukodystrophy, Metachromatic/genetics , Quality of Life , Registries , Retrospective Studies
14.
J Inherit Metab Dis ; 45(2): 353-365, 2022 03.
Article En | MEDLINE | ID: mdl-34671987

Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient-own liver-derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient-derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient-derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched-chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient-specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process.


Amino Acid Metabolism, Inborn Errors , Organoids , Amino Acid Metabolism, Inborn Errors/metabolism , Humans , Liver/metabolism , Membrane Transport Proteins/metabolism , Metabolic Networks and Pathways , Organoids/metabolism
15.
Brain ; 145(1): 105-118, 2022 03 29.
Article En | MEDLINE | ID: mdl-34398223

Metachromatic leukodystrophy is a lethal metabolic leukodystrophy, with emerging treatments for early disease stages. Biomarkers to measure disease activity are required for clinical assessment and treatment follow-up. This retrospective study compared neurofilament light chain and glial fibrillary acidic protein (GFAP) levels in CSF (n = 11) and blood (n = 92) samples of 40 patients with metachromatic leukodystrophy (aged 0-42 years) with 38 neurologically healthy children (aged 0-17 years) and 38 healthy adults (aged 18-45 years), and analysed the associations between these levels with clinical phenotype and disease evolution in untreated and transplanted patients. Metachromatic leukodystrophy subtype was determined based on the (expected) age of symptom onset. Disease activity was assessed by measuring gross motor function deterioration and brain MRI. Longitudinal analyses with measurements up to 23 years after diagnosis were performed using linear mixed models. CSF and blood neurofilament light chain and GFAP levels in paediatric controls were negatively associated with age (all P < 0.001). Blood neurofilament light chain level at diagnosis (median, interquartile range; picograms per millilitre) was significantly increased in both presymptomatic (14.7, 10.6-56.7) and symptomatic patients (136, 40.8-445) compared to controls (5.6, 4.5-7.1), and highest among patients with late-infantile (456, 201-854) or early-juvenile metachromatic leukodystrophy (291.0, 104-445) and those ineligible for treatment based on best practice (291, 57.4-472). GFAP level (median, interquartile range; picogram per millilitre) was only increased in symptomatic patients (591, 224-1150) compared to controls (119, 78.2-338) and not significantly associated with treatment eligibility (P = 0.093). Higher blood neurofilament light chain and GFAP levels at diagnosis were associated with rapid disease progression in late-infantile (P = 0.006 and P = 0.051, respectively) and early-juvenile patients (P = 0.048 and P = 0.039, respectively). Finally, blood neurofilament light chain and GFAP levels decreased during follow-up in untreated and transplanted patients but remained elevated compared with controls. Only neurofilament light chain levels were associated with MRI deterioration (P < 0.001). This study indicates that both proteins may be considered as non-invasive biomarkers for clinical phenotype and disease stage at clinical assessment, and that neurofilament light chain might enable neurologists to make better informed treatment decisions. In addition, neurofilament light chain holds promise assessing treatment response. Importantly, both biomarkers require paediatric reference values, given that their levels first decrease before increasing with advancing age.


Leukodystrophy, Metachromatic , Biomarkers , Child , Glial Fibrillary Acidic Protein , Humans , Intermediate Filaments , Leukodystrophy, Metachromatic/diagnostic imaging , Leukodystrophy, Metachromatic/therapy , Magnetic Resonance Imaging , Neurofilament Proteins , Retrospective Studies
16.
Pharmaceutics ; 13(12)2021 Nov 26.
Article En | MEDLINE | ID: mdl-34959304

The aim of this study was to get insight into the internalization and transport of PEGylat-ed mixed micelles loaded by vitamin K, as mediated by Scavenger Receptor B1 (SR-B1) that is abundantly expressed by intestinal epithelium cells as well as by differentiated Caco-2 cells. Inhibition of SR-B1 reduced endocytosis and transport of vitamin-K-loaded 0%, 30% and 50% PEGylated mixed micelles and decreased colocalization of the micelles with SR-B1. Confocal fluorescence microscopy, fluorescence-activated cell sorting (FACS) analysis, and surface plasmon resonance (SPR) were used to study the interaction between the mixed micelles of different compositions (varying vitamin K loading and PEG content) and SR-B1. Interaction of PEGylated micelles was independent of the vitamin K content, indicating that the PEG shell prevented vitamin K exposure at the surface of the micelles and binding with the receptor and that the PEG took over the micelles' ability to bind to the receptor. Molecular docking calculations corroborated the dual binding of both vita-min K and PEG with the binding domain of SR-B1. In conclusion, the improved colloidal stability of PEGylated mixed micelles did not compromise their cellular uptake and transport due to the affinity of PEG for SR-B1. SR-B1 is able to interact with PEGylated nanoparticles and mediates their subsequent internalization and transport.

17.
Brain Commun ; 3(4): fcab256, 2021.
Article En | MEDLINE | ID: mdl-34805998

The recent identification of NAA80/NAT6 as the enzyme that acetylates actins generated new insight into the process of post-translational actin modifications; however, the role of NAA80 in human physiology and pathology has not been clarified yet. We report two individuals from a single family harbouring a homozygous c.389T>C, p.(Leu130Pro) NAA80 genetic variant. Both individuals show progressive high-frequency sensorineural hearing loss, craniofacial dysmorphisms, developmental delay and mild proximal and axial muscle weakness. Based on the molecular structure, we predicted and confirmed the NAA80 c.389T>C, p.(Leu130Pro) variant to result in protein destabilization, causing severely decreased NAA80 protein availability. Concurrently, individuals exhibited a ∼50% decrease of actin acetylation. NAA80 individual derived fibroblasts and peripheral blood mononuclear cells showed increased migration, increased filopodia counts and increased levels of polymerized actin, in agreement with previous observations in NAA80 knock-out cells. Furthermore, the significant clinical overlap between NAA80 individuals and individuals with pathogenic variants in several actin subtypes reflects the general importance of controlled actin dynamics for the inner ear, brain and muscle. Taken together, we describe a new syndrome, caused by NAA80 genetic variants leading to decreased actin acetylation and disrupted associated molecular functions. Our work suggests a crucial role for NAA80-mediated actin dynamics in neuronal health, muscle health and hearing.

18.
Blood Adv ; 5(16): 3092-3101, 2021 08 24.
Article En | MEDLINE | ID: mdl-34402882

Mucopolysaccharidoses (MPS) are devastating inherited diseases treated with hematopoietic cell transplantation (HCT). However, disease progression, especially skeletal, still occurs in all patients. Secondary inflammation has been hypothesized to be a cause. To investigate whether systemic inflammation is present in untreated patients and to evaluate the effect of HCT on systemic inflammation, dried blood spots (n = 66) of patients with MPS (n = 33) treated with HCT between 2003 and 2019 were included. Time points consisted of pre-HCT and, for patients with MPS type I (MPS I), also at 1, 3, and 10 years of follow-up. Ninety-two markers of the OLINK inflammation panel were measured and compared with those of age-matched control subjects (n = 31) by using principal component analysis and Wilcoxon rank sum tests with correction. Median age at transplantation was 1.3 years (range, 0.2-4.8 years), and median time of pre-HCT sample to transplantation was 0.1 year. Normal leukocyte enzyme activity levels were achieved in 93% of patients post-HCT. Pretransplant samples showed clear separation of patients and control subjects. Markers that differentiated pre-HCT between control subjects and patients were mainly pro-inflammatory (50%) or related to bone homeostasis and extracellular matrix degradation (33%). After 10 years' follow-up, only 5 markers (receptor activator of nuclear factor kappa-Β ligand, osteoprotegerin, axis inhibition protein 1 [AXIN1], stem cell factor, and Fms-related tyrosine kinase 3 ligand) remained significantly increased, with a large fold change difference between patients with MPS I and control subjects. In conclusion, systemic inflammation is present in untreated MPS patients and is reduced upon treatment with HCT. Markers related to bone homeostasis remain elevated up to 10 years after HCT and possibly reflect the ongoing skeletal disease, making them potential biomarkers for the evaluation of new therapies.


Hematopoietic Stem Cell Transplantation , Mucopolysaccharidoses , Mucopolysaccharidosis I , Humans , Inflammation , Longitudinal Studies , Mucopolysaccharidoses/complications , Mucopolysaccharidoses/therapy , Mucopolysaccharidosis I/therapy
19.
Mol Genet Metab Rep ; 28: 100779, 2021 Sep.
Article En | MEDLINE | ID: mdl-34258227

Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is a rare, X-linked recessive multisystem lysosomal storage disease due to iduronate-2-sulfatase enzyme deficiency. We presented three unrelated Slovenian patients with the severe form of MPS II that received three different management approaches: natural course of the disease without received specific treatment, enzyme replacement therapy (ERT), and hematopoietic stem cell transplantation (HSCT). The decision on the management depended on disease severity, degree of cognitive impairment, and parent's informed decision. The current benefits of MPS II treatments are limited. The lifelong costly intravenous ERT brings significant benefits but the patients with severe phenotypes and neurological involvement progress to cognitive decline and disability regardless of ERT, as demonstrated in published reviews and our case series. The patient after HSCT was the only one of the three cases reported to show a slowly progressing cognitive development. The type of information from the case series is insufficient for generalized conclusions, but with advanced myeloablative conditioning, HSCT may be a preferred treatment option in early diagnosed MPS II patients with the severe form of the disease and low disease burden at the time of presentation.

20.
Hum Genet ; 140(7): 1109-1120, 2021 Jul.
Article En | MEDLINE | ID: mdl-33944996

Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.


DNA Helicases/genetics , Intellectual Disability/genetics , Mutation, Missense , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Catalytic Domain , Child , Child, Preschool , Cohort Studies , Epilepsy/genetics , Female , Genes, Dominant , Humans , Intellectual Disability/physiopathology , Male , Neurodevelopmental Disorders/physiopathology , Pedigree , Young Adult
...